

1

Scalable Teaching of Software Engineering Theory and Practice:
An Experience Report

 Solal Pirelli, EPFL

ABSTRACT
We report on our experience and lessons learned from teaching
the theory and practice of software engineering to hundreds of
undergraduate students majoring primarily in computer science.
These students know how to write code but not engineer software.
In particular, the teaching load appears to scale well to hundreds
of students despite offering open-ended exams in an interactive
theory course that focuses on solving concrete problems. We
teach theory and practice sequentially, to give students time to
apply what they learn, which also enables us to iterate on the
theory course quickly based on results from the practice course.

1. Introduction
Software products are more than the sum of their code modules,
thus students need to learn more than how to write code [10,
17]. Even for students who do not intend to become software
engineers, the skill of engineering maintainable software only
becomes more relevant as more fields depend on software.
While students learn some software engineering basics on their
own in other courses, such as basic version control during team-
based course projects, course-sized software is unlikely to trigger
the problems that good software engineering practices deal with,
thus students are unlikely to learn these practices on their own.
We report on our experience teaching a theory-practice pair of
courses, in back-to-back semesters, to undergraduate students in
computer science and related majors. We taught these courses
for the past 6 years. We describe the context further in §2.
The theory course, Software Engineering, teaches one subject per
week with a focus on solving concrete problems rather than
learning facts. The practice course, Software Development Project,
is based on the Scrum development methodology. Students take
on the role of development team and share the product owner
role with two staff members who act as their coaches. Projects
proceed in two-week sprints and include a meeting with coaches
in the middle of each sprint to ensure students do not fall behind.
Students are easily motivated for their project as they own it
from start to finish, but in early iterations of the theory course
we found it all too easy to present facts that felt disconnected
from students’ “real world” of course homework and projects.

We settled on interactive lectures based on concrete problems
that keep students interested. We describe course contents in §3.
Because the courses’ latest iterations had around 180 and 120
students respectively, numbers that grow year after year, one key
concern is to scale grading while remaining valid, reliable, and
fair. On one end of the spectrum, asking students to write essays
does not scale. On the other end, automatically grading students’
code with unit tests cannot test their understanding of software
design, let alone give actionable feedback. For the theory course,
our exams have short free-text questions, which can be quickly
graded manually, and programming questions whose correctness
can be graded automatically and whose design can be quickly
graded manually. For the practice course, we use frequent grid-
based reviews of students’ output, ensuring the grades reflect
students’ performance over the entire project rather than their
final output. We describe grading further in §4.
The courses changed significantly in the 6 years we cover here.
The course pair structure led to a refinement of the theory
course based on our observations in the practice one, such as
covering asynchrony more deeply as we realized that students
knew the theory behind parallelism yet did not know how to
write maintainable asynchronous code. Even the split in two was
an evolution as they began as one course covering both theory
and practice concurrently.
While previous work found that students enjoyed active learning
less even as they learned more [8], our experience does not
match this: as we switched to more interactive lectures, the
course evaluations improved, students explicitly brought up the
interactive elements as a positive in course evaluations, and their
projects improved despite more demanding project criteria. We
describe how the courses evolved based on our observations and
on student feedback in §5.
We learned valuable lessons for both course design and lower-
level implementation details. A recurring theme is that processes
should be lightweight to not burden students and staff but still
have concrete constraints. Fully agile processes that focus only
on results are not a good fit for students first learning how to
engineer products. When and how to give feedback to students
without unreasonably burdening the staff was crucial for both
courses. The split into theory and practice courses is a success,
though they could be two halves of a bigger course. We could
not fix all problems to our satisfaction, especially around the
choice of technology and its consequences in the project. We
share the lessons we learned and remaining challenges in §6.
Our course material, including lecture notes and past exams, is
publicly available at github.com/sweng-epfl/public.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICSE-SEET '24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0498-7/24/04
https://doi.org/10.1145/3639474.3640053

https://github.com/sweng-epfl/public

ICSE SEET’24, April, 2024, Lisbon, Portugal S. Pirelli

2

2. Background
Learning the theory and the practice of specific subjects, such as
object-oriented programming or compilers, is necessary but not
sufficient to develop quality software in the real world. One way
to do this is through a “capstone”-style project in which students
learn by doing. However, a project alone will not teach skills that
students are not even aware of. For instance, debugging code in a
productive way is hard for novices [21], and thus it is unlikely
that most students would figure out a good debugging method
on their own within the timeframe of a project course. This is
especially true in the context of a university, where students may
have relied mainly on TAs for help and not learned how to look
for answers on websites such as Stack Overflow, even though
this is a crucial part of modern debugging [16].
The need for a theory-only course to teach the principles of
software development has been recognized before [11, 19]. Such
a course can establish solid foundations for a project afterwards,
such as teaching the DevOps skills necessary for the technical
side of project management [2]. However, a project-less course
can appear disconnected from the real world, with artificially
constructed theoretical examples, and thus motivate students
less than a project-based course.
Teaching a theory-practice pair of courses is a natural con-
sequence of the benefits and risks of a theory-only course. Stu-
dents can first learn the core skills they need for a project that
they do not already know. This involves general skills such as
debugging, DevOps techniques, and testing. Students may also
need to be taught concrete ways to apply subjects they have seen
as individual modules in previous courses, such as parallelism.
After the theory, students can then spend time in the practice
course learning skills that need longer-term practice, such as
how to properly divide tasks in a project [20].
Another benefit to teaching theory and practice as separate
courses is that the practice enables instructors to evaluate the
theory. Properly evaluating a course in software development is
an open problem, since the impact of this sort of course is felt in
the long term by design [6]. By teaching a project shortly after a
theoretical course, instructors get faster feedback in terms of
what clearly does or does not work. For instance, if students do
not effectively use continuous integration in their project, then it
is unlikely the DevOps theory was effective.
The theory course must teach concrete ways to develop software,
which is naturally less theoretical than most theory courses, but
must remain focused on principles. For instance, the original De-
sign Patterns book [9] includes 23 design patterns. Teaching all
of these in a course is not realistic. Instead, students should learn
the concept of a design pattern, and some well-chosen examples
they are likely to use in their project.
Scaling up to hundreds of students is a key challenge, just
as it is for other courses. Smaller courses can use strategies such
as hiring professional coaches [22], which helps provide a good
experience to students but is expensive to scale to the level of a
mandatory course in a large university, even without considering
the challenge of finding a large amount of qualified coaches. Past
work has noted that even ~200 students is already large [24].

Grading is a core part of the scalability challenge since the
amount of course staff is typically limited. If each exam takes
one hour to grade, then grading hundreds of exams is outside of
the ability of a reasonably sized course staff. Options include
peer grading [3] or even self-grading [26], but these raise hard
questions in terms of reliability and potential to collude or cheat.
One way to shorten grading time is to make exams automatically
gradable, which can work to find semantic errors [18] but not to
grade code design or theory. Multiple-choice questions provide a
coarse-grained way to test theoretical understanding, but can
both fail students who made minor mistakes, and help students
who would not know where to start without a set of possible
answers. Large Language Models are a promising direction [23],
but are not currently reliable enough for production use.
We report on a theory-practice pair of courses we taught for
six years, mainly to computer science undergraduates in the
middle of their degree. The last edition of our theory course had
~180 students, while the practice course had ~120. The difference
comes from the former being required for more majors. Both are
worth 4 credit units out of the 30 that students take per semester.
This corresponds to ~7h of work per week.
Our university has over 10,000 students, about 20% of which are
in the school of computer science, which includes related fields
such as data science and cybersecurity. Enrollment has been
growing rapidly, especially in computer science: our class size
has roughly doubled in the last 6 years. Most students attend
classes in person, but after the COVID pandemic the number of
students who watch recordings instead has increased to around
40% in our courses. Courses at our university do not, in general,
use attendance as a grading criterion, but sometimes use quizzes
and midterms that require students to be physically present at
specific times.
Compared to other universities in the region, our university has
a more theoretical focus, with courses designed to teach the un-
derlying fundamentals and rarely any specific technology. This
anecdotally leads to issues for both recent graduates and em-
ployers, who appreciate the theoretical depth but wish there was
less of a need to learn basic practical skills on the job.
Most students have taken a set of prerequisites such as an intro-
duction to object-oriented programming and to functional pro-
gramming, CPU architecture, as well as the theory of parallelism.
However, some students from other majors, as well as exchange
students, have not taken these and may or may not have taken
equivalent courses.
Since our university does not offer a software engineering major,
our courses are the main way for students to explicitly make the
jump from writing code for course projects and homework as-
signments to engineering real software. While students have typ-
ically worked in teams during course projects before, our courses
are the first ones in which they are exposed to development
methodologies, mainly Scrum.
Our teaching workload is equivalent to around 1 full-time posi-
tion for the theory course and 1.5 full-time positions for the
practice course. This takes the form of two co-lecturers and ten
teaching assistants, mostly undergrads who did well in previous
editions of the courses.

Scalable Teaching of Software Engineering Theory and Practice ICSE SEET’24, April, 2024, Lisbon, Portugal

3

3. Contents of the courses
Our overall objective is to teach students to develop real-world
software from start to finish. Software Engineering, the theory
course, focuses on recognizing common needs; knowing which
techniques can help and why simpler techniques don’t work;
designing, testing, and implementing programs; and being able
to constructively criticize software written by others. Software
Development Project, the practice course, teaches students how to
work in a team, including dividing tasks, planning, testing, and
demoing their work. Students develop Android apps from
scratch in teams of 6, coached by a pair of TAs, using the Scrum
methodology. Teams choose what app they want to build and
can use any Android-based technology they want. Overall, our
goal is to shift students’ mindset from writing code to engineering
software products, keeping in mind the limited time we have and
the number of students we handle.
In terms of methods, we focus on modern teaching practices, in
particular interactivity. In the theory course, this translates to
exercises interspersed with lectures. The lecturer never speaks
for more than 15 consecutive minutes, after which students do
practical or theoretical exercises for 5–15 minutes, the lecturer
interactively reviews the solutions with students, and the cycle
begins anew. We also emphasize frequent repetition: there are
three exams rather than one with increasing weights in the final
grade, and lectures that do not follow an exam begin with a quiz
on the previous lecture’s contents.
We want students to remember high-level solutions, even if
they do not remember the exact details. Each section in a lecture
is a question, such as “how can we reuse concepts across soft-
ware systems?” to introduce design patterns and “what makes
code debuggable?” to introduce defensive programming, invari-
ants, and logging. Students can look up details when they need
them, but only if they know there is a solution in the first place.
For instance, a student who has never heard of defensive pro-
gramming is likely to either slowly reinvent the wheel or be led
astray by solutions to the wrong problem, such as how to navi-
gate code faster in their favorite debugger.
We present the theory schedule in Table 1, with lecture ob-
jectives. Each lecture is 120 minutes, plus breaks and some time
for a quiz at the beginning, or an exam review for lectures after
an exam. The lecture on Requirements is only two-thirds the
length of the others, since one third is used to motivate the
course, which works well because the exercises for Requirements
are shorter as they are more theoretical. Infrastructure is the
most applied lecture, as it uses Git exercises to illustrate version
control. The Testing lecture includes dependency injection,
which is key to testing Android apps. Debugging is mainly not
about the act of debugging itself, but about writing readable and
debuggable code to facilitate debugging. Design is a practical
look at using modularity and abstraction, illustrated with design
patterns to decouple an app’s UI and business logic. Performance
is a high-level view focused on metrics and system design, not
on micro-optimization. Evolution teaches how to read existing
code due to the necessity of doing so in the real world [25], as
well as documentation and versioning.

Mobile Platforms introduces the differences between traditional
platforms and mobile ones using Android as an illustration, such
as app lifecycles and efficiency concerns due to battery use. The
Asynchrony lecture was born from our observation that students
could not apply in practice the parallelism concepts they had
seen in theory, and thus focuses on the Future abstraction [5]
and its use in design, implementation, and testing. Teamwork is
about the concepts students will need in their project, especially
Agile and code reviews. Security comes after the final exam due
to logistics: our lecture slot is on Friday, and thus we need time
to grade the final before the winter break.
We chose not to teach the specifics of UML or any modeling tool.
Instead, we present the concept of discussing design in a team
through a shared modeling language, with UML as an example.
This is in line with our focus on high-level solutions over tools.
We present the project schedule in Table 2, which is simpler
as most of the course is a set of Scrum “sprints”. The first week
consists of a “bootcamp” for individual students, during which
they write a basic Android app while also forming teams. Once
students have picked teams, the second week consists of a team
“bootcamp” that includes common tasks most teams need re-
gardless of their app idea, such as using a database. The first two
weeks also serve as time to pick a project idea. We require that
apps must use some online service, have a concept of users, an
offline mode, and use at least one phone sensor. This ensures all
teams encounter the same core challenges. We explicitly forbid
teams from writing their own backend, as this is too much of a
time sink given the low time budget of the course.
At the beginning of each sprint, teams meet with the coaches for
a demo of their app in its current state, a retrospective on the
previous sprint, and planning for the upcoming sprint. Teams are
asked to pick items from their backlog and create a list of tasks
assigned to team members before the meeting, but coaches can
help if desired and override decisions if necessary. Teams also
meet with their coaches in the middle of each sprint, to ensure
all is going well, though the need for this meeting can be waived
at the coaches’ discretion.
In addition to writing code, which must always come with tests,
students must review each other’s code. This comes in the form
of code reviews on pull requests, with mandatory checks that at
least one person has signed off on a pull request before it can be
merged. Coaches occasionally perform code reviews as well,
mainly to show what a good code review looks like.
Each sprint, students must write a short summary of the past
sprint focused on what went right or wrong in terms of process.
For instance, students may note that they started their work too
late, or underestimated the time merging multiple branches into
their main branch would take. Summaries force students to self-
reflect and avoid making the same mistakes again. It also gives
coaches a written record so they can proactively confront teams
that seem to be about to repeat their mistakes.
At the end of the course, teams submit a video demo of their app,
all of which are made available to the entire class. The staff then
selects which teams should present live to the entire class. There
is no exam, instead students are graded individually each sprint
and graded as a team at regular intervals.

ICSE SEET’24, April, 2024, Lisbon, Portugal S. Pirelli

4

Title Objectives

1
Introduction
Requirements

Motivate the course
Formalize and use requirements. including internationalization, accessibility, and ethics

2 Infrastructure
Contrast 1st, 2nd, and 3rd generation version control systems, use version control
and continuous integration, communicate effectively in commit messages

3 Testing
Understand what and when to test, evaluate tests with code coverage,
adapt code to enable fine-grained testing

4 Debugging Develop readable and debuggable code, isolate the root cause of bugs,
use a debugger to better understand and debug code

5 Exam #1

6 Design Apply modularity and abstraction in practice, compare ways to handle failures,
reuse concepts with design patterns, decouple business logic and user interface code

7 Performance
Compare performance metrics and scales, create appropriate benchmarks,
profile code to find bottlenecks, choose adequate algorithms and designs for performance

8 Evolution
Find one’s way in a legacy codebase, safely evolve such a codebase with refactorings,
document and quantify changes, establish and use solid foundations with versioning

9 Exam #2

10 Mobile Platforms
Contrast traditional and mobile platforms, understand new metrics such as power use,
know the basics of mobile apps such as lifecycles, user permissions, and app stores

11 Asynchrony Understand asynchrony in practice, build maintainable asynchronous code with Futures,
write tests for asynchronous code, and design asynchronous software components

12 Teamwork
Contrast development methodologies including Scrum and Waterfall,
apply agile principles in practice, divide tasks in a team, write useful code reviews

13 Exam #3

14 Security
Design and use threat models, analyze the trusted computing base of a piece of software,
design secure software components, know the root causes of common vulnerabilities

Table 1. Week-by-week schedule of the theory course, in the first semester.

Work Description

1 Individual bootcamp Create a “Hello, World!” Android app per student, including tests and CI

2 Team bootcamp Create a standard app per team, with authentication, maps, API calls, basic UI, and caching

3-13 Sprints 2-week sprints with weekly meetings, students mostly in control of the product backlog

14 App showcase Each team demoes their app to the rest of the class

Table 2. Week-by-week schedule of the project course, in the second semester.

Submission to ICSE SEET’24, April, 2024, Lisbon, Portugal Anonymous et al.

5

4. Grading
Course grades must be valid, reliable, and fair [1, 14]. Validity is
the degree to which evaluations are trustworthy, i.e., accurately
reflect students’ mastery of the material. Reliability is the degree
to which the same answer is assessed consistently, regardless of
who writes the answer an, who grades it, when it is graded, and
other such environmental factors. Fairness, which can be viewed
as a part of validity and reliability, is the absence of bias. Overall,
students must know in advance the objectives they must achieve,
know what graders are looking for in an answer, and not worry
that factors outside of their control may harm their grade.
Scalability is another key objective in a large classroom: the
course staff must be able to grade each exam in reasonable time,
without having to compromise the other objectives. For instance,
a multiple-choice question set with a single correct answer per
question is very scalable, but compromises validity since minor
mistakes or misunderstandings can lead to large losses of points,
while students who would not be able to answer a question if it
was free-form may be able to guess the correct choice.
We grade how students fare as software engineers, for a
short period of time in the context of the theory course’s exams,
and for a longer period in the project course. In particular, exam
statements are written in the context of a team with customers,
and all grading criteria are defined in terms of the consequences
of good software engineering practices. For instance, a question
involving adding a cache for Web requests in an existing system
does not mention design patterns, and its grading criteria do not
include the use of any specific design patterns, but rather we ask
and grade that the cache should be self-contained and modular.
Our exams, like our project, are open book. Exams are a sort of
very short sprint in which students must answer questions from
hypothetical teammates or customers and implement tasks they
have been assigned. The former are theoretical questions, and
the latter are practical questions. We give one example of each
type as Figure 1 and Figure 2 respectively. Importantly, each
question is short enough that the time spent reading is small
compared to the time spent thinking about and writing answers
and ends with the grading criteria and available points. Answers
to theoretical questions are always required to be 1–2 sentences,
ensuring students know how to concisely express their thoughts
and lowering the time spent grading each answer. Answers to
practical questions involve both high-level design decisions to be
graded manually, and implementation code that can be graded
by a tool such as automated tests or code coverage.
Project grades consist of two equally weighted components: the
individual performance of each student, graded each sprint, and
the overall deliverable of each team, graded each third of the
course. Both grades consist of multiple criteria graded on a 5-
level scale: Excellent, Good, OK, Poor, Very Poor. We provide the
full grading grid to students, which includes expectations of each
level for each criteria, and summarize them here as Table 3 and
Table 4. In exceptional cases, when the individual and app grades
differ significantly, the staff may adjust students’ final grades.
This adjustment is unfortunately subjective, but we only have to
use it for a handful of clear-cut cases in practice.

Users report that your app freezes when they open its image
gallery, which shows images in a scrollable grid. This is the
function run to display the gallery:

void openImageGallery() {

 List<Image> images = getImages();

 displayImages(images);

 initializeButtons();

}

In one sentence, explain why the app is freezing:
…

Users complain your image gallery uses too much mobile data.
In one sentence, propose the first step towards improving this:
…

For each sub-question, you will receive up to 5 points for a concise
answer based on good engineering practices.

Your colleague wrote a command-line client to list users on
your company’s platform but fell ill before they could write
tests. Your task is to write a test suite for this client.

Make minimal modifications to Client.java to make it
testable: (1) it should not have hardcoded dependencies on its
environment; and (2) the new implementation should have the
same behavior as before.
Write tests for the modified client in ClientTests.java.
You do not need to worry about running the app, since your
company’s API is not implemented yet.

You get 15 points if you make minimal and clean modifications to
the code such that its behavior does not change. You get 20 more
points if you provide useful and maintainable unit tests that fully
cover the branches of the client class.

Figure 1. Example of a theoretical exam question.

Figure 2. Example of a practical exam question.

Rubric “Excellent” grade requirement

Planning
Large increment, fitting with the sprint
backlog, with time for review and merging

Code
Maintainable, robust, and documented code
at the levels of both functions and modules

Tests Tests for all or almost all cases

Reviews
Thorough code reviews that consider design
and likely future evolution of the codebase

Table 3. Individual grading criteria in the project.

ICSE SEET’24, April, 2024, Lisbon, Portugal S. Pirelli

6

Grading the individual planning component is the most difficult
of the bunch, due to the subjective nature of what is a “large”
increment in the context of a project. Depending on the project,
the existing codebase, and the technology involved, whether a
given piece of work is enough to merit an Excellent grade can be
hard to decide. Similarly, ensuring students take on enough work
at the beginning of a sprint is a difficult problem. In practice, an
end-to-end scenario that provides some value to users is usually
enough to get an Excellent grade in planning.
The theory course also includes graded quizzes at the start of
most lectures, which together count for 5% of students’ grades.
This is intended to motivate students to attend the quizzes and
thus practice their learning and find gaps in their understanding
before exams.
To mitigate the impact of any single event on a student’s grade,
such as feeling sick on the day of an exam, we have three exams
rather than one in the theory course, we drop the worst quiz
grade, and we drop the worst sprint grade in the project. Fur-
thermore, the first app grade in the project only counts for 10%
of the overall app grade, and mainly serves to “wake up” teams
whose code is not up to par.
To improve reliability and fairness, all grading is done in pairs.
Each exercise in an exam is entirely graded by the same pair of
TAs, who must agree on each grade. Project coaches are in pairs
and must also agree on each grade. This also helps with
knowledge transfer between junior and senior TAs.
Scalability is baked into our grading design. We must grade
an entire exam in at most a week, which in practice means an
afternoon parallelized across pairs of staff members. We also
must grade each team’s sprint in the project course quickly so
that the team can know how to adjust for the next sprint.
Having a rubric is a necessity, as taking decisions on a case-by-
case basis takes too much time. For exams, we start from the
public criteria given in each question, and graders create a rubric
per criteria as they grade. We have found that having 3, or at
most 4, criteria per question is a sweet spot for fine-grained
grading that scales. Tools such as Ans.app and Gradescope help
make this practical. For the project, thanks to the detailed grid of
criteria and levels per criteria, the main time sink is reading each
students’ code in the pull requests they made that sprint.
We also pre-filter answers to practical questions to remove an-
swers that do not pass basic smoke tests we give to students
along with the statements. This ensures graders do not lose time
manually evaluating the design of code that does not work at all.
This is similar to a real-world code review: a software engineer
proposing code changes that do not even pass smoke tests will
likely be met with frustration that they did not run these tests
before asking others to review the code.
We found overall that factors that help scalability also help with
reliability and validity in general. For instance, requiring TAs to
not spend time nitpicking the exact naming of variables not only
saves time but also leads to more valid grades. Just as a software
engineer would not be happy if their colleagues decided to fight
every variable name, a student will be disappointed to get a poor
grade because of small disagreements if their code is otherwise
well designed and passes all tests.

In terms of time, it takes a pair of TAs 3 to 4 hours to grade 200
answers to an exam question, which includes not grading the
answers that fail smoke tests. Thus 10 TAs can grade an entire
exam in one afternoon. For the project, it takes around 2 hours
for one coach to grade one team, and 30 minutes for the other
coach to double-check this grading, thus it takes 5 hours for a
pair of coaches to grade 4 teams.
Discouraging and detecting cheating is a challenge any
course faces, but the open book nature of our grading makes this
easier. Plagiarism and unauthorized collaboration are the only
forms of cheating we must look out for. The former can be done
with automated tools as well as paying attention for obvious
style changes during grading. We allow students to copy code if
they indicate the source and the code is under a license that
permits such copying, just as a real-world project would. The
latter is done during exams by TAs who look at students’ laptops
to ensure they are not emailing or chatting with each other, and
during projects by looking out for red flags and by discussing
students’ code with them during the weekly meetings to ensure
they understand what they are doing in general.
Tools based on Large Language Models, like ChatGPT, are a
new and interesting challenge which we had to consider in the
latest edition of the course. We decided to allow students to use
ChatGPT as long as they indicated they had done so, in the same
way they would give credit to a human helping them. Our exams
often naturally lead ChatGPT astray as it behaves similarly to a
very confused student, though the latest GPT-4 model is less bad.
Typically, ChatGPT provides lengthy answers that try to cover
every possible angle without actually taking a stand, which is
what some students do even without ChatGPT. These answers
get few, if any, points, since we do not grade based on keywords.
Minimizing the length of statements, which we do to ensure
reading is not a bottleneck for students, also helps confuse
ChatGPT, possibly because it provides less context. For code-
based theoretical questions, ChatGPT often provides a long code
snippet as an answer even if the question is about design and
should not be answered with code.
One interesting fact we noticed when testing our questions with
ChatGPT and various prompts related to software engineering is
that the quality of training data varies widely across subjects.
Scrum in particular leads to dubious answers such as answering
that “the principle of transparency in Scrum” means the daily
standup really is the place for in-depth technical discussions, a
question we intended to be easily answered in the negative.

Rubric “Excellent” grade requirement

Functionality
The app provides clear value to users and
fits within the Android ecosystem

Resilience
The app is resilient to failures, user error,
and malice, with corresponding tests

Maintainability
The code is modular, clean, and documented.
Another team could take over productively.

Table 4. App grading criteria in the project.

Scalable Teaching of Software Engineering Theory and Practice ICSE SEET’24, April, 2024, Lisbon, Portugal

7

5. Evolving the courses
Our courses today are drastically different from six years ago.
First, they used to be a single course, worth fewer credit units
than the combined amount they are currently worth. Second, the
theory was focused on facts, not concrete problems. Third, the
project was focused more on the process than on the outcomes.
We report on these three points in detail, on changes that did not
pan out and that we reverted, and on the impact of the changes
we made.
The changes we made are based primarily on feedback from stu-
dents, which comes from many channels. The most direct one is
a survey we run after each theory exam, whose anonymous
completion is worth 2% of the exam points and thus has a high
response rate. We also get direct feedback in course evaluations
that students fill through the university portal, though these lack
incentives and thus have a response rate closer to 50%. Student
questions during lectures also give us feedback on what concepts
need better explanations. Indirectly, we also obtain feedback
from TAs answering questions about exercises, grading exams,
and coaching projects. The latter in particular gives us concrete
and larger-scale feedback on whether students are able to apply
in practice the concepts we taught in the theory course.
We split theory and project into separate courses, the big-
gest change in terms of logistics and also the most successful
one. Part of the reason for this change was specific to the study
plan of computer science majors at our university: splitting the
course in two allowed us to increase the workload since it is now
split over two semesters. But the main reason behind the split is
that there are too many theoretical subjects the project depends
on, and teaching these concurrently is unrealistic. Students who
first learn about requirements, or applied modularity, or testing,
or essentially any of our theoretical subjects realize their existing
code has structural flaws that will lead to problems down the
line. Students naturally want to rewrite parts of their code to
remove these flaws, but this is hard to balance with the need to
add features to have a useful app at the end of the course.
With two separate courses, we can teach subjects at the depth
we believe to be necessary, in an order we believe makes sense,
instead of constraining ourselves based on what students need in
the first weeks of their project. Students can focus on the exer-
cises in the theory course and the project in the practice course,
instead of sacrificing exercise time for project time and thus im-
plementing concepts they are not sure they understand.
We shifted from memorizing facts to solving problems.
While the concepts underlying our courses have not changed,
we used to teach specific facts without much motivation behind
them, and to evaluate students’ knowledge of these facts. This
also led to spending too much time on details, such as policies
for naming variables and classes since they are easy to describe
and easy to grade. Furthermore, details do not lend themselves to
interactivity, since exercise answers typically repeat what was
said in a lecture and are thus not useful within a lecture. We now
see a much deeper understanding of key concepts in the project
course. For instance, students used to see continuous integration
as an opaque process, but now know why it rejects their code.

The shift toward problem-solving helped with the validity of
theoretical exam questions and the scalability of practical ones.
Grading facts in theoretical questions is trivial to grade when
using multiple-choice questions, but minor misunderstandings
cause students to get zero points for an answer that was almost
right in their head. Grading open-ended theoretical questions is
slower, but our policy of requiring concise answers and our use
of tools make it feasible, as we discussed above. While validity
was not an issue in practical questions before, scalability was.
Grading every potential low-level issue takes time. Grading a
student’s overall approach is faster. This does not mean we no
longer consider low-level details, only that we group them into a
general “maintainable code” rubric for which a student can get
full marks even with a small number of minor mistakes, just as a
code reviewer in a real project might approve a pull request even
if they have a few nitpicks.
We noticed that students enforce low-level policies in the project
by themselves, such as insisting on naming, formatting, and
choice of data structures in code reviews. In fact, one of the main
issues we notice in students’ code reviews is the same one we
eliminated in our course: too much focus on low-level facts at
the expense of a high-level view. Coaches must sometimes point
out design flaws in code that students merged after a “thorough”
code review by a student pointed out every minor naming issue.
We shifted the project focus from process to outcomes,
with earlier and stricter feedback on outcomes. The goals we
want students to achieve have not fundamentally changed, but
we now communicate them better and intervene earlier in case
of problems. Due to the limited time budget of our course, we do
not have the time for students to discover long-term issues on
their own without sacrificing the quality of their project. Grades
used to surprise students, even with regular coach feedback.
We now enforce stricter constraints throughout the project, and
explicitly grade each sprint as it happens instead of handing out
grades for the entire project at once. Constraints include a level
of code coverage below which students can no longer merge pull
requests, mandatory continuous integration, overriding students’
backlog order if their app does not yet meet course requirements
such as an offline mode, and reducing the definition of done for
tasks that take more time than expected. Students still learn from
their failures, but the impact of these failures is now contained to
one sprint or two at most instead of the entire project.
Since we made expectations explicit, we can now grade based on
outcomes we ask for rather than compliance with specific steps.
The fact these grades are frequent and binding ensures students
follow coaches’ advice. For instance, it used to be common for
students to not merge their code because they did not think it
was ready. This was despite reminders from their coaches that
iterating with a smaller feature that fully works is better than a
larger feature that does not. Teams would thus come to their
end-of-sprint meeting with little to demo since no new feature
worked end-to-end, defeating the purpose of the Scrum method.
While real-world customers would complain, students do not
perceive coaches as customers, and thus took their complaints as
advice. Now that these complaints are in the form of a grade,
students realize they must correct course.

ICSE SEET’24, April, 2024, Lisbon, Portugal S. Pirelli

8

Since we drop the worst sprint grade when computing the final
grade, coaches can reassure students the first time this happens
that, as long as the students learn from their failure, it will not
impact their grade. This also helps coaches assign a “poor” or
“very poor” grade without feeling bad about it.
We also decreased the overhead of the Scrum process by moving
to 2-week sprints instead of 1-week ones. This enables students
to take on bigger tasks in a sprint, and to pivot to smaller tasks if
they realize in the middle of the sprint that they will not be able
to complete the entire task they originally planned. We still kept
weekly meetings due to our past experience with teams that had
failed “too much” in a single week already given what they can
quickly recover from, but the mid-sprint meeting is now merely
a short standup meeting. This enables coaches to intervene if
they need to, without taking time from teams that work well
since they would anyway organize standup meetings.
Not all our changes were satisfactory. We tried adding guest
lectures, proposing projects with existing customers, and peer
feedback in the project, but these did not pan out.
We intended guest lectures to show students how real-world
software development works, but found they were not worth the
time investment and typically not well attended by students. Our
time budget means any guest lecture sacrifices one subject we
want to teach, and thus should have high value. Students did not
care much for the guest lectures, and some even perceived it as
the staff not bothering to do their teaching job. This may partly
be due to us not investing enough time in helping guest lecturers
design their lecture.
We asked a local company and some student associations such as
a music festival to propose project ideas and act as joint product
owners with the coaches, but the resulting projects were hard to
grade and usually did not motivate students more than if they
had chosen their projects. This failure may come from our “half-
attempt” at it, since most teams were still working on their own
idea, and thus the sponsored projects were more of an add-on
than a focus of the course. Previous work describes successful
attempts at capstone-style projects [7, 15].
We asked students to give feedback on their teammates in the
project, but received muted reactions. Despite our assurances
that this would not impact their teammates’ grades, students
were not keen to discuss problems openly, except in extreme
cases. Students typically report such extreme cases to their
coaches anyway, so the peer feedback did not help. Since one
cannot realistically argue that the coaches will both read the
peer feedback and not be influenced by it at all, perhaps feedback
available only to teammates and course lecturers but not to
coaches would help.
The changes we made were broadly well-received, both in
terms of student evaluations and project outcomes. The theory
course’s grade in university-mandated evaluations went up from
being mostly “good” to “very good” on a 4-point scale. Students
still complain that the project course takes more time than its
allotted credits imply, but they overall feel that the courses are
worth it and also produce better apps.

6. Lessons learned
Having described our courses, the way we grade, and how the
courses evolved, we now share the lessons we learned in the
past six years and what could be improved next.
Theory before practice is a good idea. In our context of a
computer science major in which students do not spend time on
concrete aspects of software development, teaching the theory
and practice in parallel does not work well. Projects expand to
fill whatever time the students have available, and thus students
sacrifice the theory side. There are also too many subjects one
needs to cover to establish solid foundations before starting a
project. Covering these subjects in parallel with projects is too
late to be useful in the short term.
A bigger course split in two, instead of separate courses, may
work better even with the same overall amount of time, since
students could spend more time per week on the project and
better amortize fixed time costs such as standup meetings. How-
ever, repetition would be less spaced over time.
Concrete problems help motivate theory. We noticed this in
both our courses: students appreciate that we start from prob-
lems and explain how to solve them, including examples of these
problems. When students are in the middle of making a mistake
in their project, sharing an anecdote about real-world failures or
even a failure in a past edition of the course works much better
than appealing to theoretical concepts.
TAs should maintain a database of concrete anecdotes,
both from their own experience and from real case studies, to
have good examples to give to students.
Problem-solving exams can scale as long as the grading ru-
bric is focused and the graders trained to maintain this focus.
Multiple-choice questions are not a necessity for theory, and unit
tests are only one part of a scalable strategy for practice. This
requires writing exams with scalable grading in mind.
The staff must be trained to focus when grading and avoid
the temptation to spend time on overly detailed feedback. Such
feedback is well-intentioned but leads to cutting corners once
graders realize they do not have enough time to grade all sub-
missions. Giving concrete expectations to graders in terms of
time and rubric details seems to work well.
Graded quizzes are not worth the stress on both students and
staff. Quiz grades have two constraints: they must be worth
enough to merit the time the staff spends preparing them, but
they must not be worth too much since they are small. These
constraints are not satisfiable together. New quiz questions must
be written every course iteration if they are graded, and the staff
must spend time grading them and answering regrade requests.
This is too much of a time commitment given the low ceiling on
how much the quizzes can reasonably weigh in the final grade.
Quizzes are useful but should not be graded. They give
short-term feedback on students’ understanding to both students
and lecturers. Not grading them would alleviate student stress,
not require staff time every year, and allow peer instruction [12,
13] when correcting answers in class. At most, one could grade
whether students attempted the quizzes, to incentivize students
to participate in them.

Scalable Teaching of Software Engineering Theory and Practice ICSE SEET’24, April, 2024, Lisbon, Portugal

9

Project coaches must be proactive, much more than they may
reasonably expect. In the short time frame of a semester, letting a
student make the same mistake twice in a row and telling them
that this time they really must do it right is too late. Forcing a
merge of a smaller feature that the team wishes to expand first,
for instance, makes coaches feel overly imposing but is required
to avoid teams failing too much. Similarly, coaches must grade
according to the criteria and levels they are given, regardless of
subjective criteria such as feeling the team put a lot of effort, to
avoid teams getting different grades due to different coaches.
Project coaches should receive formal training, not only
oral discussion during staff meetings or emails. Just as concrete
problems help students learn software development, giving
coaches concrete examples of common project problems would
help them make correct and uniform calls. Coaches should also
be given estimates of the time they need to spend grading, just
like graders for exams.
Code reviews work well as peer instruction in a project,
with the added benefit that they resemble real-world practice.
The main challenge is to ensure students’ reviews are thorough
and uncover design issues rather than superficial syntax nitpicks.
The lack of an objective way to assess a code review makes this
more difficult: it is possible, though unlikely for students in a
course, that a piece of code is so flawless that no review could
point out real issues. One way to address this is to insist on the
knowledge transfer aspect of code reviews, which is a priority
for software engineers [4]. Requiring students to ask questions
so that they truly understand why the author of the code chose a
particular design and implementation yields inquisitive reviews,
without making students feel that they are attacking the author.
Asking students to explicitly leave positive comments praising
the parts they find particularly well-made and explaining why
also helps.
Teams should be able to request a parallel code review of
some of their pull requests from coaches every sprint. Coaches
reviewing pull request instead of students deprives students of an
opportunity to practice. On the other hand, reviewing code after
students have already done so can be seen as grading the student
review rather than helping. Coaches should perform in-depth
reviews at the request of teams but require the team to release a
review at the same time, so that the two reviews do not influence
each other. This does not require synchronization other than
agreeing on a time to release a scheduled email.
Students often default to Waterfall when uncertain, for in-
stance making long-term plans about the final state of their app
even before they have tried the technologies available to them on
Android. The existence of previous course projects in the curric-
ulum that have well-defined deliverables using well-known
technologies does not help. Defining only a backlog of tasks per
sprint does not seem to be enough.
Teams should be asked for concrete short-term plans as a
compromise, instead of requiring only a description of their app
at the beginning of the semester and a backlog of tasks at every
sprint. The first plan could be a “minimum viable product” de-
scription of what the app should look like after a sprint, with an
adjusted plan for the next sprint after each sprint.

Grading open-ended projects is hard but worth it. Even
with well-defined criteria and levels, coaches do not always find
it easy. This is not surprising, but it should not distract from the
fact that open-ended projects are worth it from a motivational
standpoint. An even older edition of the course, prior to the
work reported in this paper, instead asked all teams to develop
the same application. From what we can tell, this was a worse
experience for students. While students today did not experience
this older version of the course, they did experience projects
with well-defined criteria, as mentioned above. Thus, in course
evaluations, they often explicitly mention the open-ended factor
as a positive.
Project requirements should be more specific, requiring fea-
tures instead of abstract concepts such as “user support”. The
requirements we have work reasonably well, but some teams still
spend time reinventing the wheel, such as implementing their
own authentication system. Forcing students to use a specific
system would defeat the point of the open-ended and problem-
solving nature of our courses but asking them to have a realistic
set of features may help. Requiring email verification, password
recovery, and two-factor authentication would dissuade all teams
from writing their own authentication system while highlighting
the benefits of code reuse.
The time team meetings take is bimodal, especially at the
beginning of the project. Good teams quickly find their pace and
finish meetings in barely more time than it takes to demo an app
and review the sprint plan. Even when coaches ask for an oral
retrospective, good teams have thought about it and are able to
answer quickly and concisely. On the other hand, teams that
need more time from the coaches require much more. This time
investment is worth it from a teaching perspective, but hard to
square with fixed time slots per team.
Projects should have office hours and shorter meetings,
instead of doing everything in a single meeting. A short meeting
slot, with assigned coaches, could be used for the demo and a
retrospective. A much longer slot, with whichever staff members
are available, would help teams that need more help.
Tool reliability shapes students’ experience. The list of fea-
tures in tools such as continuous integration services, device
emulators, and development environments matters less than the
reliability of these tools. Continuous integration is the biggest
culprit in our project course, and Android is unfortunately not as
good a platform as it should be in this regard. Students often run
into tests that only fail in continuous integration. Even with a
recorded video of the emulator during testing, a feature Android
only recently added officially, finding a root cause is hard. Thus,
students frequently report spending most of a sprint trying to
debug continuous integration issues, which demotivates them.
Students finish the course wondering if continuous integration is
really worth it given the pain, defeating a course objective.
Another form of reliability is documentation and obsoletions.
The recommended way to write Android apps changes almost
every year, but the documentation does not always follow, and
students find plenty of resources on the Web that are obsolete
despite being relatively recent. Students are less likely to search
for solutions on their own if they often find outdated results.

ICSE SEET’24, April, 2024, Lisbon, Portugal S. Pirelli

10

We have no concrete idea on what could be improved for this
final lesson about tooling reliability. Ideally, we would select the
course technology based on tooling support, so that students’
first foray into real-world development is at least supported by
solid tools. However, many possible candidates are unavailable
for reasons beyond our control. Web-based solutions require
knowledge of JavaScript that our students do not have, and that
cannot be learned at the same time as a time-constrained project.
iOS requires developers to use Apple machines, which is not a
reasonable ask from students. Desktop applications such as using
JavaFX would not be as motivating, especially since students
could not develop apps based on real-time locations, which are a
popular project basis.

7. Conclusion
We described our experience teaching a theory-practice pair of
software engineering courses over the last 6 years.
We successfully scaled to almost 200 students in the theory
course and 120 in the practice one using the equivalent of 1 and
1.5 full-time teaching loads respectively, while increasing the
interactivity of the courses and the quality of the grading. The
theory course in particular could scale further since its material
is now complete and thus needs less attention.
While previous work suggested interactive courses may be less
well-received by students than traditional ones [8], we did not
observe this. Students mostly gave top evaluations to our theory
course. In our internal course survey, 63% of students approved
having exercises done during lectures while only 14% of students
disagreed.

8. Data availability
The course contents, including lecture notes, exams, and meta-
level documentation for lecturers, are publicly available at
github.com/sweng-epfl/public. The exact feedback from students,
such as the course evaluations, cannot be shared publicly.

References
[1] Allen, J. and Lambating, J. 2001. Validity and Reliability in

Assessment and Grading: Perspectives of Preservice and In-
service Teachers and Teacher Education Professors. (Apr.
2001).

[2] Alves, I. and Rocha, C. 2021. Qualifying Software Engineers
Undergraduates in DevOps - Challenges of Introducing
Technical and Non-technical Concepts in a Project-oriented
Course. 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education and
Training (ICSE-SEET) (2021), 144–153.

[3] Aniche, M., Mulder, F. and Hermans, F. 2021. Grading 600+
Students: A Case Study on Peer and Self Grading. 2021
IEEE/ACM 43rd International Conference on Software Engi-
neering: Software Engineering Education and Training (ICSE-
SEET) (2021), 211–220.

[4] Bacchelli, A. and Bird, C. 2013. Expectations, Outcomes, and
Challenges of Modern Code Review. Proceedings of the 2013
International Conference on Software Engineering (San Fran-
cisco, CA, USA, 2013), 712–721.

[5] Baker, H.C. and Hewitt, C. 1977. The Incremental Garbage
Collection of Processes. Proceedings of the 1977 Symposium
on Artificial Intelligence and Programming Languages (New
York, NY, USA, 1977), 55–59.

[6] Breaux, T.D. and Moritz, J. 2023. A Metric for Measuring
Software Engineering Post-Graduate Outcomes. 2023
IEEE/ACM 45th International Conference on Software Engi-
neering: Software Engineering Education and Training (ICSE-
SEET) (2023), 283–295.

[7] Bütt, E., Person, S. and Bohn, C. 2022. Student-Sponsored
Projects in a Capstone Course : Reflections and Lessons
Learned. 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering Education and
Training (ICSE-SEET) (2022), 254–264.

[8] Deslauriers, L., McCarty, L.S., Miller, K., Callaghan, K. and
Kestin, G. 2019. Measuring actual learning versus feeling of
learning in response to being actively engaged in the class-
room. Proceedings of the National Academy of Sciences. 116,
39 (2019), 19251–19257.
DOI:https://doi.org/10.1073/pnas.1821936116.

[9] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. De-
sign Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc.

[10] Garousi, V., Giray, G., Tuzun, E., Catal, C. and Felderer, M.
2020. Closing the Gap Between Software Engineering Edu-
cation and Industrial Needs. IEEE Software. 37, 2 (2020), 68–
77. DOI:https://doi.org/10.1109/MS.2018.2880823.

[11] Gestwicki, P. 2018. Design and Evaluation of an Under-
graduate Course on Software Development Practices. Pro-
ceedings of the 49th ACM Technical Symposium on Computer
Science Education (New York, NY, USA, 2018), 221–226.

[12] Gopal, B. and Cooper, S. 2022. Peer Instruction in Online
Software Testing and Continuous Integration - A Replica-
tion Study. 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering Education and
Training (ICSE-SEET) (2022), 199–204.

[13] Gopal, B. and Cooper, S. 2021. Peer Instruction in Software
Engineering - Findings from Fine-Grained Clicker Data.
Proceedings of the 52nd ACM Technical Symposium on Com-
puter Science Education (New York, NY, USA, 2021), 115–
121.

[14] Gordon, M.E. and Fay, C.H. 2010. The Effects of Grading
and Teaching Practices on Students’ Perceptions of Grading
Fairness. College Teaching. 58, 3 (2010), 93–98.

[15] Gorka, S., Miller, J.R. and Howe, B.J. 2007. Developing Real-
istic Capstone Projects in Conjunction with Industry. Pro-
ceedings of the 8th ACM SIGITE Conference on Information
Technology Education (New York, NY, USA, 2007), 27–32.

[16] Li, A., Endres, M. and Weimer, W. 2022. Debugging with
Stack Overflow: Web Search Behavior in Novice and Expert
Programmers. Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Software Engi-
neering Education and Training (New York, NY, USA, 2022),
69–81.

[17] Li, Z., Arony, N., Devathasan, K. and Damian, D. 2023.
“Software is the easy part of Software Engineering” - Les-
sons and Experiences from A Large-Scale, Multi-Team Cap-
stone Course. 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering Education and
Training (ICSE-SEET) (Los Alamitos, CA, USA, May 2023),
223–234.

https://github.com/sweng-epfl/public

Scalable Teaching of Software Engineering Theory and Practice ICSE SEET’24, April, 2024, Lisbon, Portugal

11

[18] Liu, X., Wang, S., Wang, P. and Wu, D. 2019. Automatic
Grading of Programming Assignments: An Approach Based
on Formal Semantics. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET) (2019), 126–137.

[19] McBurney, P.W. and Murphy, C. 2021. Experience of Teach-
ing a Course on Software Engineering Principles Without a
Project. Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education (New York, NY, USA, 2021),
122–128.

[20] Meulen, A. van der and Aivaloglou, E. 2021. Who Does
What? Work Division and Allocation Strategies of Comput-
er Science Student Teams. International Conference on Soft-
ware Engineering. (May 2021).
DOI:https://doi.org/10.1109/icse-seet52601.2021.00037.

[21] Murphy, L., Lewandowski, G., McCauley, R., Simon, B.,
Thomas, L. and Zander, C. 2008. Debugging: The Good, the
Bad, and the Quirky – a Qualitative Analysis of Novices’
Strategies. Proceedings of the 39th SIGCSE Technical Sympo-
sium on Computer Science Education (New York, NY, USA,
2008), 163–167.

[22] Paasivaara, M. 2021. Teaching the Scrum Master Role using
Professional Agile Coaches and Communities of Practice.
2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training
(ICSE-SEET) (2021), 30–39.

[23] Pinto, G., Cardoso-Pereira, I., Monteiro, D., Lucena, D., Sou-
za, A. and Gama, K. 2023. Large Language Models for Edu-
cation: Grading Open-Ended Questions Using ChatGPT.
Proceedings of the XXXVII Brazilian Symposium on Software
Engineering (New York, NY, USA, 2023), 293–302.

[24] Porquet-Lupine, J. and Brigham, M. 2023. Evaluating Group
Work in (Too) Large CS Classes with (Too) Few Resources:
An Experience Report. Proceedings of the 54th ACM Tech-
nical Symposium on Computer Science Education V. 1 (New
York, NY, USA, 2023), 4–10.

[25] Ryan, B., Soria, A.M., Dreef, K. and van der Hoek, A. 2022.
Reading to Write Code: An Experience Report of a Reverse
Engineering and Modeling Course. 2022 IEEE/ACM 44th In-
ternational Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET) (2022),
223–234.

[26] Walser, T.M. 2009. An Action Research Study of Student
Self-Assessment in Higher Education. Innovative Higher Ed-
ucation. 34, 5 (Dec. 2009), 299–306.
DOI:https://doi.org/10.1007/s10755-009-9116-1.

